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ABSTRACT

The work reported on this contract tcok place between 1 August 1963
and 31 July 1964 and is summarized in the following two papers:

(1) Analysis Techniques for Determining Mass Motions in the Upper

Atmosphere from Chemical Releases

{2) Turbulence in the Upper Atmosphere

The first report describes analysis techniques which were developed for
determining motions in the upper atmosphere from triangulation photography
of chemical releases and was published as AFCRL ::onort No. 64-187 in January
1964, Only the abstract of this report will be presented.

The report on turbulence has not been published previcusly and will be
presented in complete form, The upper atmosphere parameters which will be
discussed are vertical autocorrelation scale of the mean winds, motion spectrum
scale of the mean vinds, motion spectrum of the turbulent winds, mixing lenath
scale, scale of the smallest eddies, correlaticn scales of the turbulent
velocities, dissipation length parameter from turbulent winds, globule size
scales and cutoff altitude, time scales of motion, energy balance of the
motion, and criteria for the onset of turbulence.

The upper atmosphere motions such as are reported here will "reshape"
missile trails into similar configurations. Hence from the detailed know-
ledge of the characteristics which missile trails will take in the upper
atmosphere, it should be less difficult to develop apparatus for controlling

and/or detecting missile trails.
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ANALYSIS TECHNIQUES FOR DETERMINING MASS MOTIONS
IN THE UPPER ATMOSPHERE FROM CHEMICAL KRELEASES*
C. G. Justus, H. D, Edwards, R. N. Fuller
Georgia Institute of Technology
Atlanta, Georgia
ABSTRACT
Analysis procedures are presented {or determining mass motions in the
upper atmosphere by photographic triangulation and tracking of artificial
clouds produced by chemical releases. Techniques are given both for clouds
which have identifiable features which can be tracked and for trail clouds
which have few or no identifiable features. A discussion of various coordi-
nate systems necessary for both the determination of camera orientation and
the triangulation calculations is also included. All of these coordinate

cystems are suitable for an eaxrth which is an ellipsoid of revolution, which

is the assumption made.

* This report was published as Scientific Repcrt No. 1, January 1964,

AFCRL Report No. 64-187,
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TURBULENCE .4 THE UPPER ATMOSPHERE

C. G. Justus and H..D. Edwards
Georgia Institute of Techriology
Atlanta, Georgia

ABSTRACT

By direct investigation of fluctuating turbulent velocities determined
from chemigal releases, data have been obtained which indicate that turbulence
observed up to altitudes near 105 km is ambient turbulence, produced by wind
shears. This turbulence is isotropic only for scales =~ 1 km or less. The
smallest eddies are on the order of 20 m in size with characteristic velocities
and times of about 2 m/sec and 10 sec. The larges* eddies observed are about
6 km in size with characteristic velocities and times of about 15 m/sec and
400 sec, It is thought that tidal waves and gravity wave components may
account for the major portion of all velocity fluctuations with size scales

greater than 6 km,

The turbopause, or upper height limit of turbulence of the scales observed,
usually occurs within + 5 km of the 105 km level. This cutoff altitude appears
to be the result of the rate of energy supplied by the wind shears becoming too
small to maintain the turbulence in the presence of a dissipation rate which is
increasing rapidly with altitude.

Growth measurements on diffusing globules produced in the chemical release

clouds indicates that the Batchelor form of turbulent diffusion is applicable

in this height range.




INTRODUCTION

Edwards et al {1963) and other groups have reported that chemical release
clouds usually become globular in appearance below some altitude, usually
around 105-110, It is cresumed that these globules are associated with
turkulerce but there remains scme question (Nawrccki and Papa (1963) and Cote
(1962} ) as *o whether this turbulence is naturally occurring ambient
turbulence or is in some way produced by either the ejection mechanism or a
reaction of the ejection vehicle with the ambient.

In the following report an attempt is made to examine the turbulence
quantitatively, comparing results whenever possible with the predictions
of existing turbulence theories, It is hoped that these results will shed
some light on this problem of the exact cause of the turbulence.

In an attempt to unify the thinking with regard to turbulence and
turbulent eddies Stewart (1959) propased the following definitions:

Turbulence - "A fluid is said to be turbulent if eazh component of the velocity
is distributed irregularly and aperiodically in time and space, if the flow is
characterized by a transfer of energy from larger to smalier scales of motion,
and if the mean separation of neighboring fluid particles tends to increase

with time,"

Eddy - #/n eddy is "a volume of fiuid moving more or less coherently with respect
to the mean flow,"

These detinitions exclude from the realm of turbulence such two dimen-
sional phenomena as vortex sheets, whirlpools, convection cells, and internal
waves.

Turbulent motion is in many ways analogous to the random molecular motiocns

responsible for the phenomena of viscosity, diffusion, and conductivity in




gases. There are, however, several differences between these two types of

motion, First, a molecule is under the influence of . very small number of

cther molecules in the gas and each molecule moves about somewhat freely, whereas
a fluid element in turbulent motion cannct move independently of the general
motion of the other fluid elements. Turbulent motion is less random, or more
ordered, than molecular motions. Secondly, turbulent motion requires a
continuous source of energy to maintain it. If the air is thermally unstable,
that is, cool air over warm air, the potential energy of the unstable arrange-
ment can supply the turbuience. In a stably stratified region of the atmosphere,
such as that above 85 km, wind shears provide the only source of energy for
maintaining turbulence.

According to standard turbulence theories (See Townsend (1956),) the eddies
in a turbulent field have a spectrum of sizes ranging from the largest eddies,
which are being supplied with energy from the source, through the intermediate
sized energy containing eddies on down to the smallest eddies, which lose
their energy by the effects of viscosity. Each eddy size interacts extensively
only with other eddies of neighbering size so that eddies containing energy
lose energy to only slightly smalier eddies which in turn lose their energy to
stil]l slightly smaller eddies, and so on until the smallest eddy size is reached.*
The effect of viscosity is to remove energy from only one size of eddies and not
to redistribute it among other eddy sizes, although *the viscous stresses can

ccnvert energy into heat* or accelerate neighboring particles.

"Big whirls have little whirls that feed on their velocity
And little whirls have lesser whirls, and so on to viscosity.”
- L. F. Richardson




Previous investigators have employed two primary means of investigating

the i1onospheric altitude region near 100 km with regard te the existence of
turbulence. These methods are (1) direct investigation of the turbulent
velocity fluctuations and (2) investigation of the diffusion characteristics
of materials released into the atmosphere.

Up until the present time the first method has been used only in
connection with radio echo observations of meteor trails such as those by
Greenhow and Neufeld (1959a, 1959b, 1960). Here the instantaneous ho:i=cntal
wind is U + u where U is the mean horizontal wind determined, for example, by
averaging all the wind determinations over a one hour period, and u is con-
sigered to be the instananeous turbulent wind fluctuation,

Accurate methods have now been developed for determining winds by
triangulation and tracking of artificial chemical clouds released into the
atmosphere by rockets. (See Albritton, et al (1962)3 Justus, et al (1964a,
19645).) Using thesc methods it is possible to measure instantaneous wind
velocities over a range of altitudes. Averaging of the wind data allows the
determination of the north-south and east-west components of the mean winds,
U (z) and V (2), as functions of altitude, z. The vertical component of mean
wind W (z) is considered to be zero. The instantaneous velocity components
determined at a height z are then U (z) +u (z), V (2) + v (z), and w (2),
where u, v, and w are considered to be the instantaneous components of the
turbuleat velocity fluctuations. Note that w is not necessarily zero.

The equivalent notation (ul, Ugs u3) *5 sometimes used instead of (u, v, w)

for the components of the turbulent velocity.




SCALES OF THE MOTICN
Yertical Autocorrelation Scale of the Mean Winds
Since the mean winds U (z) and V (2) are not static or uniform “here can
also be scales associated with the mean wind field. Liller and Whipple (1954)
performed a ~-'ical autocorrelation analysis on the mean wind profile deter-
mined from -isual meteor traiis. The vertical autocorrelation coefficient

G; (2 2z) is given by

(62z) = Z [U(z) U (z+ 5 2)] (1)
Bt {z[u (8)1° = (U (z+ 3 z)]2}%

for the U compeonent of the mean wind profile. A correlation coefficient
for the V component i3 given by substitution of V for U in (1). The sums in
(1) run over ali pairs of data points separated by a vertical distance % z, or
the sums may be replaced by integration if U is considered as a continuous
function. Physically, this analysis determines the degree cof correlation
between the wind profile and the wind profile displaced by an amount % z in
the vertical direction. The values of the coefficient G should start at + 1
fer 2 =0, go to 0 for 2 =4\, and or to - 1 “or & z = + ), where A\ is
the vertical "wave length" of the mean wind component profile,

Liller and Whipple obtained an average value of 5.2 km for Lv, the
di:tance b z for which G = 0. This value is applicables for the height
region somewhere between 82 and 113 km. Using the Liller and Whipple wind
data Hines (1940) subtracted a constant shear wind from the wind profile and
multiplied the residual wind by a height varying ccaling factor to compensate
for the increase in an_iitude of the wind with altitude, After this alteration
Hines obtained a value of 4.0 km for Lvé’ the modified zero autocorrelation

distance.




Wind data obtained from about 30 chemical releases launched from Eglin
AFB, Florida during 1962 and 1963 has been put to vertical autocorrelation
analysis. The data was broken up into three height intervals 70-90 km,
G0-11% km, and 115-170 km. The rerresentative mean altitude for sach height
range was 81 km, 104 km and 130 km. Three types of zero autocorrelation lengths
were calculated: LV for unmodified data, L , for residual winds after sub-

vl

tractioi. of a representative constant shear wincd, and LV2 for the residual
winde multiplied by a height scaling factor,

Figure 1 shows a typical set of results for GU and GV. They were obtained
from a release occurring at 05:15 CST on 16 October 1962 and coverin. an
altitude rargz of 92-106 km. The autocorrelation curve GV (5 z) ‘rosses zero
at L = 8.6 km, the correspunding value for G (5 z) is 7.5 km.

Figure 2 shows the average results for Lv LV,, and LV in each of the

2
three height ranges. The Liller and Whipple value agrees well with the Lv

N
v

data and the Hines value shows good agreement with the LV2 data. All three
L scales show an increase In magnitude with increasing altitude, the rate of
increase being about the same in all three cases.

Zimmerman (1964) has suggested that the vertical scale of the mean winds
is connected with the scale height, H. A graph of H versus altitude is also
included in Figure 2 for comparison. It appears that there is reasonable
correspondence between the values for LV and H in the height range from

90-105 km but the LV value' fall below the values for H in the height regions

above and below this.

Mo:ion Spectrum Szale of the Mean Winds

Another method for obtaining information about the scale of the mean
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winds is the evaluation of the pcint & z = Ls at which the motion specirum
function is a maximum. The motion spectrum function, F (% z), is obtained by

averaging the square velocity differences, that is
Fvbz)=<[U(z)-U(z+b2z)1> (2)

and similarly for the V component, where thz average is taken over all data
points separated by a height difference % z.

Blamont and de Jager (1961, 1962) report results of a motion spectrum
analysis of four sodium trails showing that for small values of % z, F (% z)
~ (5 2)" where n = 1.4 + 0.2. They also report that F (® z) graphs show
maxima which correspond with the vertical correlation length. Evaluation
of the point % z = Ls at which these maxima occur thus provides another method
of estimating the vertical scale of the mean winds.

The chemical release wind data used in the vertical autocorrelation
analysis was also analyzed in a similar fashion for motion spectrum features,
the data being divided into three height ranges, roughly, 70 to 93 km, 93 to
112 km and 112 to 143 km. Figure 3 shows the results of a typical motion
spectrum analysis. These data are from a releise occurring 3 December 1962
at 18:50 CST and are valid for the hteight region 112-143 km, It is seen that
for small % z the exponent n for the spectrum function power law is 1.71.

A maximum in F(® z) occurs at & z = 12 km, thus L, is 12 km for this graph.

Figure 4 shows the averaged results of the evaluation of the maximum
point Ls for each of the three altitude regions. The Ls values, like the Lv
vertical autocorrelation scales, agree with the scale height, especially in
the lower and middle height regions, Lv being somewhat less than the scale

height in the upper region.
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Figure 4 also tabulates the averaae exponents observed for F (& z). The
exponent is almost constant over the altitude range examined, increasing only
slightly with increasing altitude.

Zimmerman (1962) has pointed out that the motion spectrum analysis by
Blamont and de Jager (1961), yieldina an exponent of 1.4 + .2 is in agreement
with the shear turbulence theory of Tchen (1954) which predicts an exponent of
4/3. Zimmerman also shows that the data of Blamont and de Jager support
Tchen's theory with regard to the energy spectrum. He calculates the average

turbulent energy per unit mass E, given by

E=|<u? (z2) >-<U (z+82z)>| (3)

and shows that E ~ % 22/3 for small % z.

Roper and Elford (1963) report that the moticii spectrum function F (3 z)

4/3

is proportional to % z if only height separation is considered, but that

2/3

F (5 r) is proportional to & r if F is considered as a function of the total
separation % r,
Analysis of chemical release wind data is presently underway to calculate

F (3 r) and E. DPreliminary results tend to confirm the conclusions of Zimmerman,

and Roper and Elford.

Motion Spectrum of the Turbulent Winds

Based on work by Kolmogoroff (1741) it was shown by Batchelor (1947) that

the turbulent motion spectrum function

f(%:__I:)=<EU(_;)-U(£+’>_z)]2> (4a)

13




obeys the relationship

tr

—1 2) (4b)

2/3

= & +
Flem=c (e 2 7 (14—
~ Ir

where C1 is an absolute constant, 3 r is the magnitude of 3 r and b r, is

the component of & r in the direction of the turbulent wind component u., See
Sutton (1953) for a summary of the work of Kolmogoroff and Batchelor on this

topic.

For most purposes @ ) may be written as
f (br)~ (o )3 (5)

which is known as Kolmogoroff's Law.

Turbulent winds determined from 13 chemical releases launched from
Eglin AFB, Florida from 1959 to 1963 have been analyzed to determine the
applicability of (5) to the turbulence of the upper atmosphere. The results,
shown in Figure 5, indicate that Kolmogoroff's Law is not followed for
5r 2 1 km,

The figure indicates that the law may be followed for 5 r < 1 ki hut
the data points are too uncertain to be conclusive. Kolmogoroff's Law is
based un the assumpticn of isotropic turbulence and it is shown later that

the turbulence may be isotropic only “=r eddy scales of 1 km or less.

The_Mixi I th Scal

An analogy has been made between molecular and turbulent motions by
introducing the concept of mixing length. According to the mixing length
idea of turbulent motion, 2ddies transport momentum from one level of the

flow to another and the transport of momentum from the level z to the level

14
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z + Lm produces a fluctuation, u, in the mean velocity, U, given by

u=U(z+Lm)-U(z)--Lm'é—2' (6)

here Lm is the mixing length, Thus the magnitude of the mixing length can

be found approximately by

u
= £ q 7
L 20, (7)
dz
Figure 6 shows the averaged results obtaincd from several chemical releases.
The miving length scale is seen to remain fairly constant from 92 to 108 km at

a value close to 0.8 km and then increase rapidly above 108 km to about 3.3 km

at 112 km zltitude.

Scale of the Smallest Eddies

Standard theories of homogeneous turbulence provide a method of evaluating
the scale of the smallest,energy dissipating eddies. The size of these eddies,

le’ should be given by

34
1, = (g--)‘ (8)

where 1 is the kinematic viscosity of the atmosphere, and ¢ is either the rate,
€¢s at which the wind shears supply energy to the turbulence or tane rate, Eys
at which the turbulence is dissipating energy as heat. For isotropic turbulence

€ is presumed to be approximately equal to e,. The kinematic viscosity can

t
be evaiuated up to a height of 90 km from values given in the U. S. Standard
Atmosphere (1962) and above this altitude from the formula used for generating

the Standard Atmosphere tables

16
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3
p (T+5)

k
! .
N

N = (m2/sec) (9)

where B = 1,458 x 10-6, S = 110.4 OK, and T and p are the atmospheric tempera-
ture and density in °K and kg/m3.

Actual evaluations of £y and £, show that these quantities are not the
same throughout the upper atmosphere. (See later sections of this report for
evaluation of these parameters.) Tables 1 and 2 show values of le calculated
from A and g, for three altitudes. Both sets of values show that le is of

t

the order of 10 m and that 1e is increasing in magnatude with increasing

altitude.
TABLE 1
VALUES OF 1 USING ¢
e s
Height 1 e 1,
2, 2° 3
(km) m*/sec) m"/sec {m)
92 L 0.30 5
100 28 0.37 16
108 120 0.46 44
TABLE 2
VALUES OF le USING et
Height " £ 1
2 o) e
{km) m°/sec m”/sec (m)
92 G107 0,012 11
100 28 0.14 20
168 120 1.1 35




Correlation Scales of the Turbulent Velocities

The general double-velocity correlation coefficient gij (x3 r) is given

by

1

9.. (x3 r) = vj =1,2,3 10)

<u. (x) u. (x + 1) >
- 2
[ < Uy

() < u? e r)>
where now x is the position vector (xl X x3,), I is the vector (rl, Ty r3)
and Ups Uy uy are the components of the turbulent velocity previously denoted
by u, v, and w, and the mean values are taken with respect to time. As sean
from the defining formula, the correlation coefficient gij (xs r) serves as a
measure of the degree of correlation between the turbulent velocity fluctuations
u, (x) and us (x + ), and therefore 9 ; (x3 2) =1 for £ = 0 and 9 (x5 1)
approaches 0O as i;‘ approaches the size of the largest eddies,

Of special interest are the particular set of one-dimensional correlation
coefficients 95 (x3 r, 0, 0), 93 (x3 0, r, 0) and 94 (x5 0, 0, t) or, if
the correlation coefficients are presumed to be independent of the position in
the turbulent field, the coefficients may be denoted by 9, (r, C, 0),
9., (0, r, 0) and 9 (0, 0, r). If the correlation coefficient is also
isotropic the coefficient may be characterized by the single function g (r)

given by

g (r) = 9,, (r, 0, 0) = 95, (0, 1, 0) = 944 (0, O, 1)

An integral scale of the turbulent motion, Li is defined to be

00

L. = f g (r) dr (11)

1
Q
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The scale of the largest eddies mav be defined as the point r = Lo at which
g {v) is first 2ero, or, more loosely, the point Lo 3%t which an extrapolation
of 5 {»  zero should g (r) remain positive.

It car. be shown (Taylor (1938) ) that to second order in r, g (r) is

given by
fu e
9(r)=<(6r)>r2=1-._£3 (12)
2<u2> Lp2

where u is the turbulent velocity component in the appropriat» direction to
cor.espond to r, and

#
2
L =Sy 2> (13)

P A u2
<72

is the dissipation length parameter. Lp i< considerably larger in magnitude
than the scale of the smallest, energy dissipat 1g eddies. Lp is a length
corresoonding to eddies which contain a negligible portion of the total energy
and are responsible for a negiligible part of the total dissip” “ion of energy
as hea*,

Townsend {1956) ocives a relation showing that the scale of the dissipating

¢ddies, hers denoted by lr’ is given by
= (14)
As an epproximetion to 94 {r, O, 0}, 8y 3 (0, v, 0) and 9 4 (0, 0, r)

for i = 1, 2 (the horjzantal components), Greenhow and Neufeld (1959%)

c#.culated -
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~

c{u' ¥u' (x+1)]
g (r, z) = (15)

[2u? (x) 2u? (x+ 1) )%

where, here, u' is the horizontal component of the turbulent velocity as
defined in the introduction for the meteor type data, r is the vector with
magnitude r and vertical compon-~t z, and the summations extend over all
oositions x at which wind determinations were made.

Greenhow and Neufeld plot their determination of g (r, z) versus both
r and z and. conclude from these graphs *hat t' e vertical scale of the largest
eddies is 6 km. They report that consideration of echo pairs of the same
height separation but ditfferent horizontal separations leads to a horizontal
rate of deca’ in the correlation which indicates a horizontal scale of the
order of 100 to 200 km. Using 150 km for their value of Lo and 2.4 km as their
value of Lp, they deduce from (14) a size lc =~ 50 m for the smaller eddies.

Wind data from 13 chemical releases launched from Eglin AFB, Florida
between 1959 and 1963 have been used to calculate correlation coefficients
analogous to the Greenhow and Neufeld approximation by computing g (r, z) by
(15), where now u' stands for the horizontal component of the turbulent velocity
(u2 + v2)%'with a + or - sign attached according to whether the magnitude of
the instantaneous wind is greater or less than the magnitude of the meazn wind.

A horizontal correlation coefficient g (1, h) can be defined by

sfu (@) v (x+")]

g (r, h) = (16)

[Zu'2 (x) Zu'2 (x+ ") ]

where r' is a vector with magnitude r and horizontal component h, and the
summation extends over all positions x for which wind data were obtained such

that z, the vertical component uf r', is less than 1 km. Thus g {r, h) is an

21




approximation to 9 (r, 0, 0} or 9, (0, r, 0) and should yield information
concerning the horizontal scale of the eddies.

Figure 7 and 8 show the averaged results of g (r, z) versus z and g ‘r, h)
versus h, Both coefficients tend to zero at about 6 km, confirming the 6 km
vertical scale deduced by Greenhow and Neufeld but indicating an equal 6 km
horizontal scale instead of their 100-200 km value.

The horizontal scale of the mean winds, that is the horizontal distance
over which the mean wind profile maintains some degree of correlation, is
certainly greater than 100 km. Simuitaneous wind data obtained from separate
chemical release clouds some 100 km apart indicate that this scale may be ot
the order of 1000 km, since the wind profiles still have i positive correlation
of about 0.9 for this 100 km separation. It could be that the horizontal scale
that Greenhow and Neufeld reported was more nearly the scale of the mean winds
than the scale of the turbulent winds. This discrepancy might result from
their method of defining the turbulent components, which differs from the
definition used with regard to the chemical release wind determinations.

Correlation coefficients similar to those in Figure 7 and 8 but calculated
by using w, the vertical component of the turbulent velocity, in (15) and (16)
instead of the horizontal component do not show a similar fall off in the
correlation. Further investigation of this is planned and it is also planned
that as a next approximation to the actual one-dimensional correlation co-
efficients the quantities g (r, h) and g (r, z) can be evaluated using complete
set of components u, v, and w in (15) and (16) instead of only horizontal and
vertical components u' and w.

If the data from Figure 7 is used to estimate the integral scale of

turbulence Li one obtains a value Li =1 km. The dissipation length para-
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meter Lp is the point where a parabola g (h) =1 - 22/Lp2 passes through

zero, If the data point z = 0.5 km, g = 0,27 is used from Figure 7 ther

2\
I..p ] '1—':—9(—2)) = 0.6 km (17)

This value disagrees somewhat with the Greenhow and Neufeld value of 2.4 km
because the data points of their correlation curve approach the value g =1
more closely for small z. The fact that the data points seen in Figures 7 and
8 do not seem to approach g = 1 for z and h approaching zero may be due to the
fact that an extimated r.m.s. error of about 3 - 5 m/sec is present in all of
the wind determinations from the chemical releases whereas the r.m.s. value of
the magnitude of the turbulent winds is about 16 m/sec. Since the errcrs con-
stitute such a substantial percentage of the fluctuations being observed there
may be some degree .f destruction of correlation because of the errors. How-
ever it is interesting to note that Figures 7 and 8 show the same quantative
shape as correlation coefficients calculated by Townsend (1956) for a field

of turbulence in which there are only two distinct eddy sizes.

If the values Lp = 0.6 km and L = 6 km are used in (14) the resultant
value for lc is 18 m. This value fits into the range of values shown in
Tables 1 and 2 for the size of the smallest eddies. From the fact that a
scale Lo of about 6 km results from both Figure 7 and Figure 8 data it would
seem that the turbulence is almost isotropic, however, Dougherty (1961) has
shown that the turbulence should be isotropic only in the range from 1C to
li. The magnitude of lc’ the scale of the smallest eddies has been seen to be

about 20 m, and 1i is given by

1, =

%
i 3

/2 (18)

w
9
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where gt, again is the rate of turbulent energy dissipation and ub is the

" nn
Brunt Vaisala frequency given by
2_% 8, 2

where T is temperature, g is the acceleration of gravity, z is the vertical

coordinate and Cp is the specitic heat at constant pressure. The result (18)

is based on Bolgiano's theory (1959, 1960) which hypothesizes that the isotropic

inertial subrange exists only for scales between 1c and li’ and that an anisotropic

bouyancy subrange exists for scales between 1i and lb. Data from which N can

be computed are available in the U. S. Standard Atmosphere (1962). Using these

values @ is about 2.4 x lO-2 s.ec-1 for 90 km < z < 115 km. Using this value,

Table 3 lists values for 1i for several altitudes, as determined by values of

e, from data presented later in this paper.

t
TABLE 3
Height g 1,
2 t 3 i

(km) m /sec (kmz
90 . 0085 0.022
110 2.8 0.45
115 13 0.97

Thus, if the values of Table 3 are correct, the turbulence can be isotropic

only for the smaller size eddies and indeed there is essentially no isotropic

subrange below about 90 km. However, many globules in the height region 92-108
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km remain approximately spherical up to sizes of lkm or greater, but some of

the globules larger than 1 km do become stretched into elliptical shapes.
Therefore a more realistic value for the scale of isotropy may be about 1 km

throughout the entire height region 90-110 km.

Dissipation Length Parameter irom Turbulent Winds

Actual data on the turbulent wind components u, v and w allow the cal-
culation of the dissipation length parameter, now called Lt’ by the relation
(13)

o 3
I PR (20)

0 x
and similar relations obtained by replacing u by v or w and x by y or z.
Here the partial derivatives have to be estimateZ by retios of finite differences
Au and A x.

Wind data obtained from 13 chemical releases shows an average value for
L, of 0.65 km, in very good agreement with the value of L , the dissipation

t P

length parameter determined from the correlation coefficient data.

Globule Size Scales and the Globule Cut~off -Altitude

From observations on sodium trail releases near 100 km Blamont and de

Jager (1961, 1962) report globules ranging in size from 70 meters to 1 km,

with an average size of 0.5 km. Globule size data has been obtained from 13
chezical reieases (primarily Cesium Nitrate-Aluminum) launched from Eglin AFB
Florida between 1959 and 1963. Globules smaller thon about 200 meters could

not be measured from the photographs that were taken, but data on the growth
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of 209 separate globules with diameters greater than 200 meters was obtained.
Five of the releases had sufficient numbers of globules so that a size spectrum
could be determined, that is, the number of globules of a given size could be
plotted against globule diameters.

All five of these size spectrum plots have a peak at 0.7 km, and one
has an additional peak at 1.2 km. The peak at 1.2 km occurs because of
larger globules appearing in the height region 104-108 km, A large number
of the individual growth curves of the globules level off at a diameter of
about 0.7 km (or at 1.2 km for the higher ones) and then continue to increase
(note Figure 9). Thus the reason for the peaks in the spectrum plots is that
the growing agiobules tend to spend more time at this leveling off diameter

than at other sizes. This leveling off scale for the globules, L, iliustrated

d
in Figure 10, increases from 0.4 km at 974 km altitude to 0.75 km at 99 km and
remains constant until at 106 km it begins to increase again and reaches 1.6
km at a height of 112 km. The mechanism tha. produces this leveling off in
the agrowth curve is not known at the present.

The alobular appearance of the chemical releases ceases at some altitude,
Ht’ called the turbopause altitude, between 100 and 115 km. Both point
releases (i.e. chemicals released explosively at one or more points) and
trail releases which covered an altitude raige including Ht exhibited globules
on that part of the cloud below Ht and were smuoth above Ht' Blamont (1960)
reported H, to be at 102 km, and Manring (1962) at 102 + 4 km. A total of
56 observations on 19 chemical releases showed Ht to lie between the limits
96 and 115 km with &n average of 106 + 4 rms,

Two of the releases produced one trail as the rocket ascended and another

trail as the rocket descended. The up trails of these two releases showed
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Ht to be 106.5 and 1:7.0 xm, and the down trails indicated H_ values of 104.3

t
and 105.2 km. In both cases Ht on the down trail showed a shift of 2 km down-
ward with respect to the up trail. This may nnt be significant because solid
particies which followed the trajectory and reentered the atmosphere made the
down trails at Ht more difficult to observe and so the down trail values are
much less accurate, I' is interesting to note, however, that there appears

to be about a 2 km downward shift of the wind pattern of the down trail with

respect to the up trail, and this apparent shift in H_ may be associated with

t
the similar shift in the wind profile.

Iime Scales of the Motion

In addition to size scales of the motion one can speak of time scales
of the motion. The time scale of a particular size scale of eddy would
be the time over which that size eddy maintains its identity, or the
time over which the turbulent velocity fluctuations maintain some degree of

correlation., The size scale, L, the time scale, t,, and the characteristic

1
velocity fluctuation, v, of the eddy should be related by

sztl (21.\!

according to Batchelor (1953).
The time correlation coefficient of, say, the u component of turbulent

velocity would be

Slu(t)u(t+st)]
[2u2(t)2u2 (t+8t) ]

g (at)= (22)

where the summations extend over all observations separated by a time interval

b t.
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Greenhow and Neufeld (1959b, 1960) report results of an analysis using
(22) to calculate time correlatioa of the turbulent winds. In this analysis
the winds were averaged over twenty minute intervals, a harmonic analysis
was made of these winds to determine prevailing, diurnal and semi-diurnal
components, and the turbulent winds were defined as the residual from the
20 minute average winds after subtracting off the harmonic functions. The
first zero of the time correlation coefficient is at & t = 100 min according
to the Greenhow and Neufeld data. This value, they point out, verifies (21)
if one uses L = 150 km and v = 25 m/sec which are appropriate figures for
the large eddies according to their data.

Again, however, the detinition of turbulent winds employed by Greenhow

and Neufeld may mean that their value for t, applies not to the turbulent

1
winds but more closely to tne mean winds. The data of Greenhow and Neufel i
(1996, 1960) as well as other meteor investigations indicate that the semi-
diurnal component is the one of largest magnitude., This is confirmed by
'bservations by Rosenberg and Edwards (1964) of winds throughout the night
determined by a series of chemical release trails. The semi-diurnal component,
hiaving a period of 12 hours, would have a zero on the time correlation curve
for 8 t = 3 hrs = 180 min. Actual calculation cf the time correlation co-
cfficient from the chemical release wind data shows that the first zero on
the correlation curve of the mean winds is at abcut 200 min.

If we assume (21) is valid and use L = 6 ki and v = 15 m/sec as indicated
by the chemical release data then tl=c 400 sec, Investigation is underway

to determine if motions of :his time scale are detectable.

The time scale, 1, of the smallest eddies can be determined by an equation

31




complementary to {8)

T = {9/c )’}-‘ (23)

where, as in (8), n is the kinematic viscosity and € is either ¢ , the

energy dissipated as heat, or ez the energy supplied by the shears. Tables
4 and 5 show several values of T deduced from both £¢ and t for the heicht
range 92-108 km. Both tabies show t to be on the order of 10 sec over this
Yeight interval. The values given for the velocity fluctuations, Voo of the

small eddies are calculated from /?1) using the appropriate size scales from

Tables 1 and 2.

TABLE 4

VALUES OF t FROM s

25
D
[Ty
‘_i.
v
-3
m

T v
km) m/sec (mzzzeCBI {sec) jgfgyj)
92 5.7 0.30 4 1
100 28 0.37 9 2
108 120 0.46 16 3

32




TABLE 5

VALUES OF 1 FROM ¢

t

Heiaght 1
_(km) _ m?/sec
92 5.7
100 28
108 120

m

§m2[sec32
0.0i2
0.14

1.1

(m/sec)

0.5

SUMMARY

Table 6 and 7 give a suimary of -the various size scales of the motion

and tabulate their magnitudes or range of values in the indicated height

interval. If no height interval is indicated the applicable interval is

probably 90-11Q xm.

TABLE 6

SIZE SCALES OF THE MEAN MOTION

t—

Scale Description

Horizontal Scale

Vertical
Autocorrelation Sceale

"

Motion Spectrum Scale

Symbol Used

Magni tude
(km}

150 - 1000

4.3 - 8,6
4.1 = 6.5
2.4 - 4.5

5.5 - 12.0

Height Range

(km)

= 90

140

81 - 130

83 - 127
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The motion has been separated here into mean winds and turbulent fluctuat-
ions. However if no restricting conditions were imposed on the flow field.
motions considered here as mean winds could (after substracting off any tidal
or other non-random components) be considered as the turbulent component for
higher order size and time scale eddies.

If a fluid element is displaCcd‘a small amount from its equilibrium
position, it experiences a restoring force which produces a harmonic motion

L " fn

with a natural frequencycng, the Brunt-Vaisala frequency, given by (19),

Layzer (1961) states that if the lifetime t of a turbulent eddy is greater

1
than 2nﬁmg, then it is possible to follow a typical fluid element throuahout

a complete gravitational oscillation, But if a fluid element retains its
identity for such a length of time the motion is not true turbulence. Again
using the vaiue mb = 2.4 x 1()"2 sec-1 we see that motions with time scaies
great than about 260 seconds would not be true turbulence.

This value of mb may be in error since it is based on standard atmosphere
conditions and an extrapolation of Cp from the values for air at low pressure
laboratory conditions. Table 8 shows the values of 3T/ dz and g/cp which are
the two least accurately known terms in ub' It is seen tnat in the -1inge
90-115 km the g,/'C‘D term contributes more heavily to mg than the 3T/ 3z term.
Thus a large uncertainty in g/Cp would represent a correspondingly large

uncertainty in ab' Consequently it may be that values of t. = 400 sec,

1
previously deduced from the chemical release winds, would represent true
turbulent motion., But it would be difficult to reconcile a turbuient

motion with a time scale of 100 minutes or more with the above arjument.




TABLE 8

I

3
9 2

AND g/7 VERSUS HEIGHT
r

9 T -

02z C

Z P
(km) (oK km) Oy km)
90 0,00 9.54
95 2.94 9.53
100 3.85 9.51
105 4,70 9.49
110 7.00 9.47
115 9.25 9,43

It seems quite likely that the features of the mean winds can be explained
by a combination of tidal waves and other ordered motion such as the gravity
waves proposed by Hines (1959, 1960). If this is the case then true turbulence
will be confined to the size and time scales discussed here 3s being associated
with the turbulent motion. Further work must be done, however, to clarify
the exact nature of the motions here described as the mean winds, and to
reso.ve these motions into tidal wave, gravity wave, and other ordered motions

which may contribute to the total mean winds.

ENERGY BALANCE OF THE MOTION

If the flow is statistically steady the energy balance equation is

€s = &g te, (24)




where € is the rate per unit mass of atmosphere at which the turbulence extracts
energy from the wind shears of the mean flow, eg is the rate per unit mass of

atmosphere at which the turbulence does work against gravity, and €, is the

rate per unit mass of atmosphere at which turbulent energy is dissipated as
heat by viscous effects. The rate of supply € is given by

0 u,

—_ 1
€, = 2 2y Uy 50 (25)
1) J

where the U's are components of the mean velocity, the u's are components of
the turbulent velocity and the x's are coordinates, Xq being the vertical
coordinate, and 3 and X5 appropriate horizontal coordinates. An order of

magni tude relations for € is
e =L (26)

where v and L are the characteristic turbulent velocity and scale of the
energy containing eddies.

The mixing length theory provides an approximate relation for eq

U, L,
2%"—‘—'&“1 3 (27)

Ul
a )(3
n o non

where L is the mixing length given by (7) and @, is the Brunt-Vaisala

Eg = u3 Lm mg

frequency given by (19).

According to Lamb (1945) the general expression for g, is

t
9 u 2 du du 2 —_—\2
I i 1 3\l 2a/5 ou,
e =1 ‘.z(a x.) * Z(au *3u ) 31 L (28)
i i cyc 3 1 i @ x
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where 1 is the kinematic viscosity and 7  indicates summation over a ful}
cyc

cyclic permutation of indices. If the atmosphere is assumed incompressible

3y,
then = F) xl = 0, from the continuity equation, so the last term in (28)

i

would disappear. If, in addition, the turbulence is assumed to be isvtropic

then it can be shown (Taylor (1935) ) that

aul 2 aui 2 au2 au1
wmeflTR - ()
t axl x2 axl 3x2-|
which can be reduced to
du 2
_ 151 1
€ = 2 ( 3 x ) Co

2
since the terms in (29) are not all independent for an isotropic field and
incompressible flow.
The turbulent wind components of wind data obtained from chemical release
clouds may be used in (25) and in (27) through (30) to evaluate e, and €y and

give three separate evaluations of €, For this procedure averages such as

uy uj are obtained by aversoing over all wind determinations in a finite
height interval, usuaily atout 2 km. The derivatives are approximatci by
ratios of finite diffevences o ui/A xj. The results of these evaluations of
the energy terms, shown in Firmure 12, will be discussed later in this report,
The manrer in which 2 cleud of material diffuses afier injection into
the turbulenre sifers another method for evaluatiing £ye Cote {1962) summayrizes
the theoretical results of severel authors, Lin (1960}, Tchen (1961), Beolgiano
(1959) and Roberts {19601} for the dispersion law that zhoudd be followed by the

diffusing materiisi, The variocus dispersion relations are
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<> ~ (¢ - t°)2 ' (31)
<r2>~e(t—t)3 (32)
t o
2 4 i
<> £,2 (t - to) (33)
<> ~ 2 (¢ - to)" (34)
2 6
<1t > e, (t - to) (39)

where < r2 > is the mean square separation between particles of the injected
material, to is some appropriate reference time, presumably the time of
injection, and Z in (34) is a function of the atmospheric potential density
fluctuation and the vertical turbulent velocity fluctuations. The .elations
| (31), (32), (33), and (35) result from the use of different forms of the
| theoretical energy spectrum function, which gives a description of the
distribution of the energy within the energy containing eddies. Formula (34)
is based on Bolgiano's theory, mentioned in a previous section.

The relation (32) was first deduced by éatchelor (1950) from Kolmogoroff's
similarity hypothesis. It is this form of dispersion which presumably holds
if Kolmogoroff's principle is valid. The complete relation for descri?ing

the diffusion of a cloud injected into the turbulent field would be

2_16
a” = 3 €

3
, (t - to) (36)

where d is the diameter of the cloud, or trail of material.

Figure 11 shows a plot on l~g-lcg scale of the diameter squared of a
globule versus t - to' This is the growth curve for the same globule shown
in Figure 9, It is seen that the points at early times when the globule is
geing tnrough the leveling off phase do not follow a power law, but above the

ieveling off size the growth follows the relation (36) closer than any other
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of the diffusion formulas, the actual exponent being 2.62 in this case,

Each of the formulas (31), (32), (33) and (35) is of the form

2, .. a2 - a
<rc> €, (t to) . (37)

If the 16/3 factor of (36) is assumed, a least squares fit of globule growth

data to the formula

42 = 16/3 et“'2 (t - to)“ (38)

can be made by assuming some reasonable value of to. This procedure allows
solution for both g and €. The average value thus obtained for g was 3.0
*+ 0.4 ms. The resultant €, data are shown in Figure 12,

Data were available primarily in the region from 92-108 km for using
in (25), (27) through (30), and (37). A small amount of data were also
available in the range 108-112 km, Functions of the arbitrary form ¢ = exp
(a + bz) were fit through the data cbtained by each of these procedures,
The resultant curves, straight lines on a semi-log plot, are shown in Figure
12, The curves from each of the three turbulent wind methods for evaluating
€, disagree among themselves at come altitudes by about a factor of five, and
the results from (29) and (30), which should vield identical values of e, for
isotropic incompressible flow, disagree at some altitudes by about a factor of
2. The curve for e, obtained frem globule growth rates is in rather poor
agreement with the other €, data, especially at low attitudes. There was
considerable scatter, however, in the data points for €, from globule growth,
some of the individual data points actually falling in the region of the other

three €, curves. All of the four €, curves show €y increasing rapidly with
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altitude, chanjing by two orders of magnitude or more in 15 km,

The curves for €. and sg show comparatively little variation with
altitude. The actual curve for eé is greater in magnitude than €, from 98}
km down, which is physically unreasonable, but it should be realized that
each of the curves €, and eq should . ve an uncertainty of about a factor of
two at each aititude. This eq > Eg anomaly can be rectified well within

these limits of accuracy. It should be noted that an additional estimate

of €, obtained by subtraction of the eg curve from the e, curve by
€, “€e_-€ (39)

agrees reasonably well with the other values for g€, in the height range from

t
100 to 108 km.

The point at which the g, curve intersects the g, curve should represent

t
the absolute upper limit for the existence of turbulence, since at this inter-
section point the rate of energy supply would be equal to the rate of energy

being dissipated by viscous effects alone. The heights of these intersecticn

points for the various g, curves range from 104 to 109 km, with 107 km represent-

t
ing an approximate mean. This 107 km altitude agrees with the observed averace
value of 106 km for the turbopause altitude.

If the values vV = 15 m/sec and L = 6 km are used in (26) as the appropriacte
values of rms turbulent velocity and scale, as determined from the chemical
release wind data, one cbtains the value € =~ 0.6 watts/kq. Similarly if one

2 -2

uses in (27) mean values of u = 11 m2/sec , ub2 =6 x 10°% sec and

1Y3
6U1/6x3 = 20 m/sec km, waich are approximate average values for these quantities

througnout the height range 90 - 110 km, one obtains Eg ~ 0.3 watts/kg. Both
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of these estimated values agree fairly well with the curves for £ anid ag in
Figure 12.

Figure 13 shows a summery by Lettau {1951) of values obtained for en
from diffusion and wind profile observatlons 'n the altitugs range from 1 om
te 40 km. The figure alsc illustrates the €, variation versus altitude as
detzrmined from the chemical release diffusion and wind data in the approximate
height range 90 to 110 km. It appears from rigure 13 that € continues to

decrease with decreasing altitude below 90 km, diminishing by an additional

3 or more oxders of magnitude from 90 to 30 km.

CRITERIA FOR THE ONSET OF TURBULENCE

Reynolds Crlterion

Wrrking on flow experiments in long, straight pipes, Reynolds showed
in 1883 that the motion oecame turbulent when :he Reynolds number exceeded

2 eritizal value (== 2003), The Reyrolds numper is defined as

u
R = o
e

=2 i

(40)

fhere u is e flow velocity, d is the pipe diameter and n is the kinematic
viscosity.

In the free atmosphe-e it is stability that primarily determines whether
or not turbulence is present. If temperature decreases with altitude so that
the region ig gravitationally unstable the velocity gradient will almost never
be so small that turbulence will be inhibited by a low Reynolde number, When
the region is gravitationally stable the {low will be laminar in weak velocity
gradients, but if the velocity gradient is sufficiently large the region will

be turbulent in 4pitz of the gravitational stability.
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Consequently the Reynolds number has little bearing on the existence
of turbulence in the height region above 85 km and we must examine other

criteria for the onset of turbulence.

Richardson's Critr~ ion

Richardson's theory (1920) is based on the assumption that if €, >0
turbulence exists. From (24) it is seen that this rondition is equivalent

toe - e, >0 or eg/és < 1. Using the approximation

— LY
€ = | uw | (a1)

Richardson's forms for es and eg are

™
1l

>
£

(42)
g, =Ko (43)

where wg = d3UMz. From the equations (27) and (41) it is seen that Ko =

;q, and K = uw/(3U/b 2) or, using the mixing length theory, Ke is defined by
L4 ¢ (44)

Richardson assumed KE = KC ¢o that the condition eg/es <1 is equivalent to

the Richardson number, Ri’ being less than 1, where the Richardson number is

defined by

5 2 (45)

Therefore the "ichardson criterion may be outlined as
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Ri <1 turbulent

R.1 >1 laminar. (46)

Townsend's Criterion

Townsend (1957) developed a more elegant criterion for turbulence based
on an analogy between turbulent motion and Brownian motion. For this theory !

the quantity @, defined by

= (u -0‘v2+w2)c:.)t

ol

3 (47)

is important. Using the Brownian motion analogy, Townsend arrives at the

ettt ot s e

result
— W2
Lm = (48)
t
Using this in (43), €, may be written
2
2 Y%
g = i_ k w g
9 g

where kg =1 if the Brownian motion analogy holds exactly, so kg should be a
constant close to unity.

Equations (47) and (42) are rewritten as

_ 3 2
€, =5k, W w, (49)
and
2 2
= o)
€, T & ks W@ (50)

where the coefficients kf and ks are of order unity.
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Defining the Richardson flux number, Rf, as

£
R :.'ﬁ (51)

f e

s
Townsend derives the result
k k
- . 5 g9 't
(1 - ReIR, = 6 3 R, (52)
s

The left hand side of (52) is a minimum at Ry = % and at this point R, is the

critical value R, given by

1C
"
- —ﬁ m::.§\.? ~ %, 53
Ric - 75 .; k B Dy\ﬁbo ( 3)
g t

Tre flow will be turbulent for ail Ri < Ric'

Layzex's Criterion

Layzer (1961} extended the ideas of Townsend by imgosine the additional
restriction w_ > Wy This is the same condltion t, < ﬁﬂﬁmg daiscussed in the
section on time scales of the motion. For this to be true it is necessary tha:
the condition

~..7

k
Re < TTE (s4)
g j

be true. Combining (52) and (54), Layzer derives the consition

4 ks -2
Ry <R =% {§m+3§< } o= 0.09 (551
9 g
where, again. the flow will be turbulent for all Ri < Ric'

Observations ~» Chemical Release #ind Data

Townsend's and Layzer's interia are designed to eliminate quantities such

as uw and u2 which are considered unknowns, The mathematical steps of these

48

ARG A I A R A S o NSRS




theories can e :sctraced making only the assumptior

.2
~. W
wloos S N \56)
R{] (L‘.t

where k, is of cwder unitye Starting with egquations (27), (41), and (47), if
}
all the guantities invelving turbulent velocit: fluctuaticns are retained then

the modified Touwnsend and Layzer criteric ave

=
R, <= méihﬁim s (Townszend) (57}
(U2 vyt a wz}kjwZ
45’ .
h =T T {Layzer) (o8)
i e o

-y ;
[+ v+ w1+ Qk%) 1

Each of these critical values is on the order of C.01 for the wind dats
obtained from the chemical releases.

The averaus Richardson nueber in the heiaght ran e 90-110 km is on the
order of unity, however, s¢ that there is littie chance of setisfving Townserd's

- . -

or Layzéy's criteria in this altitude region., The percentage ccovrrance of
Richardson number lass than one have been calculated for the chemica!l release
wind data and the results are shown in Figure 14, It i3 seen that the meximumn
occurrance is around J05 km. R, being less than 1 about 3% percent of the time

there, At 125 km the occurrance of Hi < 1 has fallen virtually %o z2ers amd

at 90 km Ri is less than ' only about 10 percent of the time.

CONCLUSIONS
From the data presented here it seems that the turbulence observed up 4o

altitudes near 105 km is ambient turbulence produced by wind shears, ard is

Fay
el
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